
2004 IEEE Aerospace Conference Proceedings

Explanation Constraint Programming for Model-based
Diagnosis of Engineered Systemsiz

Sriram Narasimhan, Lee Brownston
QSS Group Inc.,

MIS 269 - 3,
NASA Ames Research Center,

Moffett Field, CA 94035
6506040832

sriram@email,lbrownston@ptolemy.arc.nasa.gov

Daniel Burrows
Penn State University,
burrows@cse.psu.edu

Abstract-We can expect to see an increase in the
deployment of unmanned air and land vehicles for
autonomous exploration of space. In order to maintain
autonomous control of such systems, it is essential to track
the current state of the system. When the system includes
safety-critical components, failures or faults in the system
must be diagnosed as quickly as possible, and their effects
compensated for so that control and safety are maintained
under a variety of fault conditions. The Livingstone fault
diagnosis and recovery kernel and its temporal extension L2
are examples of model-based reasoning engines for health
management. Livingstone has been shown to be effective, it
is in demand, and it is being further developed. It was part
of the successful Remote Agent demonstration on Deep
Space One in 1999. It has been and is being utilized by
several projects involving groups from various NASA
centers, including the In Situ Propellant Production (ISPP)
simulation at Kennedy Space Center, the X-34 and X-37
experimental reusable launch vehicle missions, Techsat-21,
and advanced life support projects. Model-based and
consistency-based diagnostic systems like Livingstone work
only with discrete and finite domain models. When
quantitative and continuous behaviors are involved, these
are abstracted to discrete form using some mapping. This
mapping from the quantitative domain to the qualitative
domain is sometimes very involved and requires the design
of highly sophisticated and complex monitors. We propose
a diagnostic methodology that deals directly with
quantitative models and behaviors, thereby mitigating the
need for these sophisticated mappings. Our work brings
together ideas from model-based diagnosis systems like
Livingstone and concurrent constraint programming
concepts. The system uses explanations derived fiom the
propagation of quantitative constraints to generate conflicts.
Fast conflict generation algorithms are used to generate and

maintain multiple candidates whose consistency can be
tracked across multiple time steps.

TABLE OF CONTENTS

...........
1. INTRODUCTION

3. MODELING FRAMEWORK 3
4. DIAGNOSIS A R C H I T E ~ U R E 4
5. EXAMPLES & RESULTS 5
5. CONCLUSIONS AND FUTURE WORK 6
REFERENCES 7
BIOGR~PHY .. 7

1. INTRODUCTION
Model-based Diagnosis '(MBD) uses a general-purpose
model of the internal structure and/or behavior of systems to
perform the diagnosis task [l] . Such models may be
structural and/or functional models. The diagnosis based on
these models takes advantage of the analytical redundancy
in the models, which is captured as static and/or dynamic
relations between the inputs to the system and the outputs
fiom the system. The basic principle of MBD can be
understood as the interaction between predictions and
observations (Figure 1). The system behavior is measured
by sensors. The computational model of the system can be
used to predict what these measurement values should be
under nominal conditions. The predicted behavior is
compared to the observed behavior to identify any
discrepancy.

' 0-7803-8155-6/04/$17.0~ 2004 IEEE
IEEEAC papcr # I 139, Version 3, Updatcd Decembcr 02,2003

0-7803-8155-6/04/$17.00 02004 IEEE

1

3495

mailto:sriram@email,lbrownston@ptolemy.arc.nasa.gov
mailto:burrows@cse.psu.edu

The Livingstone fault diagnosis and recovery kernel [Z] and
its temporal extension L2 [3] are examples of model-based
diagnosis engines. Using a simple language developed
specially for L2, domain experts can program discrete-state
models of components of systems like spacecraft. Each
component’s various nominal and failure modes, along with
constraints upon the transitions between modes, are
specified. Multiple components can then be composed into
one complete model representing a finite-domain concurrent
transition system description of a complete device to be
monitored, diagnosed, and possibly controlled. At runtime,
LZ accepts input in the form of commands issued to the
system and the observations (through sensors) from the
system. Commands are propagated through the model
system and when conflicts hetween the model state and the
sensed state are detected, a diagnosis can be performed. The
diagnostic process consists of a search, starting from the
current hypothesized state, for a model state consistent with
current observations. Usually this results in the diagnosis of
a failed component or set of components. Failure candidates
are found in order of their likelihood, based upon a priori
individual component failure probabilities. The use of
conflicts (discovered by the truth maintenance system
representation of the problem) to focus the search allows for
real-time performance on relatively complex spacecraft
models.

Livingstone successfully flew on Deep Space One as part of
the Remote Agent experiment. L2 is currently being used
for diagnosis of systems from a wide variety of domains
including International Space Station [4]. However, when
LZ was applied to the propulsion system of the X-34
reusable launch vehicle as part of Propulsion IVHM
Technology Experiment (PITEX), several limitations were
exposed. Many artificial artifacts had to be introduced into
the models and sophisticated “monitors” had to be
developed tu convert the sensed data into a form that is
suitable for input to L2. These problems are direct
consequence of the inability of L2 to handle quantitative
and/or. continuous dynamics . in the system including
transients. Similar problems have manifested themselves
when Q i n g to use L2 in other applications like the Reverse
Gas Water Shift (RWGS) system and the ISS Command &
Data Handling (C&DH) system.

In this paper, we identify these key limitations of the L2
health management system and present an extension called
Livingstone 3 (L3) that addresses these limitations. We will
present the new modeling framework that provides the

Figure 1: Model-based Diagnosis
2

Figure 2: L2 Diagno5is Architecture
support for development of models with new features like
continuous dlnaniics and the diagnosis architecture that
contains the algorithmb that use these model, !‘or diagnosis
of hvbnd systems (systems that exhibit discrete as well as
continuous behavior). Finally \\U will shou the hnctioning
of the diagnostic engine through an example sod tabulate
results from tssts on applying L3 to a set of zxamples.

2. L2 ASD 11s Llhll I‘TIOSS

Livingstone and L2 have focJscd on modeling the system to
be dugnoscd using a set of hiph-le\el, qu3lirntive models
that focus on a dtscretz characterization of the sydem’s
behavior. The undsrlying model that L 2 uses for diagnostic
reasoning has to bz in propositional logic iorm. more
specifically in ilaudol form. The two main entities uf this
framework are f‘ropusirions and Cluitjr.~. Propositions are
variables that are Boolean valued and can take on one of
three \'slues TRUE, FALSE, or USKKOWN. Propositions
are used in L? to represent the variable, in the system as
well as tipernling modes of the system and the mode
transitions between the openting modes. Faults in the
system are modeled 3s transitions to a faulty mode 01‘
operation. It is assumed that the behmior of ths syhteni in
this faulty mode can also be specificd (sometimes unknown
faulty modes that allow any behaviors are used to capture all
unanticipated faults). The diagnostic problem is to
dctermine whi2h if any ut‘ this faulty mode transitions
occurred. Clauses are disjunctions of propositions or
negations of propositions. These represent the constraints on
the behavior ofthe systcm.

The Livingstone (L2) diagnosis approach is presented in
Figure 2. Diagnosis is performed as a two step procedure,
with the steps alternating. In tho first step. possible
candidates are genernted and then in the second step. thssc
candidates are tested tior consistency with the commands
and obscnaiions seen from the system. A candidate is a set
of fault) mode trnnsitions (possibly smpty indiinting no
fault) that the system is assumed to have token ai each timz
step in Its behavior ewlutiun. Candidnte generation is hnsed
on a conflict directed search [5] algorithm. Each candidate
is tested ior consistency through Boolean ionstmint
propagJtion (unit propagotion) h o u g h the bet of cIauses
that the candidnte entails. Commands and Observations are
also added as clauses bciore propngntion. In order tu handle
transition systems, clauses at ssveral time steps are
maintained as well as transition clauses between time steps.

3496

If the propagation results in an inconsistency (the set of
clauses cannot be satisfied by any assignment to
propositions), a truth maintenance syslem is used to identify
minimal conflicts to guide the candidate generation.

This underlying propositional logic representation presents
some problems when modeling systems that are not Boolean
in nature such as circuits and logic gates. Currently
Livingstone supports models that involve variables with
values from a finite domain and very simple constraints.
Finite domain variables are converted to propositions by
creating a proposition for each value the variable can take
and creating a set of clauses that ensure one and only one of
these propositions may be true. For example, if a variable X
can take values (low, nominal, high), the following
propositions are created

PI: X=low
P2: X=nominal
P3: X=high

and the following clauses are created

Cl: X=low v X=nominal v X=high
C2: -X=low v -X=nominal
C2: -X=low v -X=high
C2: -X=nominal v -X=high

It is clear that the number of clauses just to represent one
variable is (n + 1 + "C,) where n is the number of values
that the variable can take. Obviously it is impossible to
represent variables from an infinite domain (e.g., real-
valued variables) in this framework.

Since only clauses are allowed to model system behavior,
the modeling is restricted. In addition to Boolean formulae,
only equality of variables is allowed. Even for representing
this simple constraint a large number of clauses are
required. For example, X=Y has to he represented as:

c1: -X=l0w v Y=low
C2: -X=nominal v Y=nominal
C3: -X=high v Y=high
c4 : -Y=low v X=low
C5: -Y=nominal v X=nominal
C6: -Y=high v X=high

It is clear that (2 * n) clauses are required to represent an
equality constraint where n is the number of values in the
variables domain.

When dealing with variables that are from an infinite
domain, they have to be converted to a set of fmite values
using binning strategies. For example we might consider
three bins, low (-cc to 0), nominal (= 0), and high (0 to a).
The binning strategy is dependent on the different behaviors
we want to distinguish. There are several problems with
both designing and then implementing the binning strategy.

The design is non-trivial and requires extensive domain
knowledge or lots of simulation (including fault simulation)
results. Even after that, there may he too many bins (leading
to a large number of clauses as seen earlier) or the mapping
may he too complex. The implementation of the mapping
J?om the continuous domain to the discrete L2
representation is sometimes very involved and requires the
design of highly sophisticated and complex monitors due to
the presence of sensor noise, system transients, etc.

Given these limitations, both the modeling framework and
the diagnosis algorithms need to he changed in order to
allow efticient diagnosis of systems that include quantitative
and continuous behavior. In the next section we will present
our new modeling framework for Livingstone 3. In the
following section, we will present the Livingstone 3
diagnosis architecture that allows the diagnosis of hybrid
systems.

3. MODELING FRAMEWORK
Our modeling approach is based on the hybrid automata
formalism [6] . In this formalism, the discrete state of the
system is modeled as a finite state automaton. Each state of
the automaton represents a mode of continuous operation of
the system. Accordingly, within each state, a set of
equations (differential and algebraic equations) are used to
describe the behavior of the system in that mode. The
transitions hetween the various states of the automaton may
be based on external eventsicommands (commanded
transitions) or internal conditions (autonomous transitions).
The two limitations we had with this formalism were that (i)
we wanted to generalize beyond differential algebraic
equations and (ii) we wanted to use a component connection
modeling approach rather than specify a single finite state
automaton for the entire system.

We use a hierarchical and component connection model in
conjunction with hybrid constraint automata as our
modeling kamework. The basic building blocks of the
model are components, which typically represent a physical
device, or a physical subsystem, or a logical grouping of
subsystems in a system. Components may be nested inside
components to build up a hierarchy to any arbitrary depth.
Components contain variables, constraints, and at most one
finite state automaton. Variables could be from any domain,
for example boolean, enumeration, real valued, interval
valued etc. Some variables in the component are identified
as port variables. These variables are special variables that
can he used create connections between components. A
connection between port variables in two different
components indicates that the variables are constrained to be
equal valued. Variables are also marked as state, observable,
and input indicating whether they are state variables.
measured or input to the system respectively. Constraints
represent relations over variables. The types of relations
that can be specified depend on the types of the variables.

3

3497

L.."+zp Manager

U
Figure 3: L3 Diagnosis Architecture

For example in the Boolean domain, any Boolean formula
can be used as a relation whereas in the real valued domain,
any differential and algebraic equation may be used as a
relation. Since these constraints do not depend on the mode
of the component, we call them persistent constraints
implying that variables can only take on values so that these
constraints are satisfied at all points in time.

The finite state automaton (FSA) in the component is used
to represent the continuous modes of operation of the
component similar to the hybrid automata approach. Each
automaton consists of a set of locations (representing the
states of the finite state automaton) and transitions between
the locations. Each location consists of a set of constraints
that describe the relations that hold over the variables when
the component is in that location (mode). We call these
volatile constraints to indicate that they need to be satisfied
only when the component is in that mode of operation. The
transition between locations consists of a guard condition
and a probability value. The guard condition is special kind
of constraint that evaluates to a Boolean value. For example,
in the Boolean domain this could be any Boolean formula
but in the real valued domain it is any relational formula.
We call the guard condition an "ask" constraint, since if the
constraint evaluates to true then the transition is taken. The
probability on the transition indicates likelihood of the
transition being taken. This probability is especially needed
to represent faulty transitions. Some transitions are marked
as faulty transitions, indicating that these are autonomous
(not commanded) and unobservable events. These are the
events whose occurrence we want to diagnose. They have
no guard conditions and the probability on these transitions
indicate the prior probability of such a fault occurring.

4. DIAGNOSIS ARCHITECTURE

The L3 diagnosis architecture is illustrated in Figure 3. It
consists of three main components. The system model stores
the model of the system and is responsible for tracking the
modes of operation of the different components and
determining the constraints that are valid at any point in
time. The Constraint system serves the role of tracking the
overall system behavior using constraint programming
techniques. It receives constraints from the System Model
indicative of the current configuration of the system and
propagates these constraints in order to try to assign
consistent values to variables in the system. When
inconsistencies are seen (observations are different from
propagated values for corresponding components), the

candidate manager is responsible for using the conflicts
generated as a result of these inconsistencies to generate
candidates that resolve all the conflicts and that can possibly
explain all of the inconsistencies.

The functioning of L3 is best explained through the set of
steps taken during the run of the diagnostic engine.
However we will need to defme a few terms that will be
used in this description.
Locaiion Assumpiion: An assumption that a component is in
a specific location. This typically applies only to nominal
locations.
Transition Assumption: An assumption that a component
took a specific transition. This typically applies to only
faulty transitions.
Theoy: The set of variables and constraints over variables
in the constraint system.
Conflict: A set of assumptions that make the theory
inconsistent and hence cannot all be true.
Candidate: Any set of faulty transition assumptions.
Valid Candidate: A candidate that resolves all conflicts and
does make the theory inconsistent.

The diagnosis proceeds in the following manner. Initially
the candidate manager has only one candidate called the
empty (null) candidate, which has no assumptions. This is
used to indicate that initiatly it is assumed that all
components are non-faulty. At each time step the following
things happen for each candidate in the candidate manager:

Initialize Variable values - The values for state
variables are obtained from the values at the previous
time step (at time 0, state variable values are externally
specified). For all other variables the values are
initialized to any possible value in their domains.

Persistent Constraints are added to the constraint
system. Persistent constraints correspond to constraints
that are satisfied independent of the location of
components. In addition all component connections are
converted to persistent constraints of the form Variable
= Variable.

Commands issued at the current time step are added as
constraints to the constraint system. In this the
constraints take on the form Variable = Value where
Variable is the input variable and Value is the value it
takes.

Volatile Constraints corresponding to the current
locations for all components are added to the constraint
system. Volatile constraints correspond to constraints
that are only true in specific locations of the
components. The location assumptions are used to
determine the current locations of the components and
then the constraints in those locations are added as
volatile constraints.

4

3498

The constraint system is propagated. Several
propagation algorithms including brute force and arc
consistency have been implemented.

Observations obtained for the current time step are
converted to constraints which are then compared
against predictions for corresponding variables in the
constraint system. To do this, we convert the
observation into an “ask” constraint of the form
Variable = Value. We can then ask this constraint of the
appropriate constraint. Asking the constraint is
equivalent to checking if the constraint is satisfied.
Note that in this form of ask we are interested in
determining if the constraint may possibly be true
which can he distinguished from another form of ask
that checks if the constraint is necessarily true. The
implementation of the possible “ask” should take into
account a number of factors like sensor noise,
modelling errors etc. So for example in a real valued
constraint store, the possible ask should return true if
the observation value is within some threshold (dictated
by noise characteristics) of the predicted value.

For each observation that is not consistent with the
theory, conflicts are generated from the explanations
that were created during the propagation. We first
determine the constraints whose propagation caused the
variable involved in the “ask” to be inconsistent. We
can then trace back from these constraints to any
location assumptions that were used to add the
constraints to the constraint store. The conflicts
generated are across time steps i.e., the inconsistent
variable value may have been because of a location
assumption at previous time steps. This is possible
since state variable values are held across time steps.

If conflicts are generated, these are added to the
candidate manager and valid candidates are generated.
The candidate manager is responsible for generating a
candidate that resolves all conflicts. A conflict is said to
be resolved by an assumption A if any one of its
constituent assumptions is resolved by A. A location
assumption is resolved by any faulty transition
assumption from that location. A transition (faulty)
assumption is resolved by any sibling faulty transition
assumption. Transition T’ is a sibling of transition T if
the “from” location of T’ and T are the same. A
candidate is a set of faulty transition assumptions. A
candidate resolves a conflict if the candidate has at least
one assumption that resolves the conflict. We have
implemented several search strategies like breadth first,
depth first, best fxst and A* searches that generate
candidates.

Transition conditions are evaluated and all enabled
transitions are fired to update the current locations of
all components. For this, the constraints on the
transitions are asked of the constraint system. The form
of “ask” we are interested in determining if the

constraint is necessarily satisfied. When dealing with
real values this might result in problems if we do not
use probabilistic methods.

The time step is advanced.

5. EXAMPLES & RESULTS

We have run the Livingstone 3 diagnostic engine on several
test examples including some that were used as regression
tests for the L2 system. The diagnostic performance of L3
on the L2 examples was comparable. In addition, L3 is able
to deal with models that include differential and algebraic
equations as constraints. The examples we used for our tests
were the nanoCBandLED (3 components),
microCBandLED (12 components) and the CBandLED (24
components) models that are used as regression tests for L2.
However these models involve only finite domain variables
and constraints. We transformed the nanoCBandLED to
include real-valued variables and algebraic constraints for
testing with L3. Finally we also used tank system models
involving tanks, inlet pipes, outlet pipes and connecting
pipes to test L3 on systems with differential equations and
autonomous transitions. These tank systems have been used
as test beds for other diagnostic technologies [7, 81.

R R
crndln resistance

Figure 5: Circuit Breaker Model

We will illustrate the functioning of L3 through a simple
nanoCBandLED example that includes algebraic
constraints. The nanoCBandLED system is illustrated io
Figure 4. It consists of three types of components, current
source which is a source of a constant current, a circuit
breaker that can be either on or off. If it is on, it passes the
current through and if not it does not. The LED is like a
bulb in that it lights up when current passes through it.
However the amount of illumination is dependent on the
amount of current that passes through it. There is also a
summing junction that sums the current flowing into it and
sends it out. The model of a circuit breaker (CB) is
illustrated in Figure 5 . It consists of currenth, currentout
and conductance variables that have real values. It also has a

sounu2 CBI
Figure 4: nanoCBandLED example

5

3499

cmdln variable that is a signal to turn the CB on and off
The FSA (illustrated in Figure 6) describes the different
modes of operation of the Circuit breaker and the
constraints that hold true in each of those modes. The
constraints in each of the four modes of the CB are given
by:

I------ I /

Figure 6: FSA for Circuit Breaker

off: currentout = 0.0

halfResistance: currentout = 0.5 * conductance *

blown: currentout = 0.0

We will consider a scenario where the both CB's are in the
halfResistance mode. As a result when they are turned on,
they do pass through all the current but only half of it. This
results in the LED only receiving only half the normal
current &om each CB. The fault scenario used is encoded as

on: currentout = conductance * currenth

currenth

0.0 COMMAND CBl.cmd1n on
0.0 OBSERVE LED.Illumination 0.0
1.0 OBSERVE LED.Illumination 2 . 5
1.0 COMMAND CB2.cmdIn on
2.0 OBSERVE LED.Illumination 5.0
2.0 COMMAND CBl.cmdIn off
3.0 OBSERVE LED.Illumination 5.0
3.0 COMMAND CB2.cmdIn off
4.0 OBSERVE LED.Illumination 5.0

where the fmt column indicates the time, the second
column indicates whether a command was issued or an
observation was made, the third column indicates the
command or observation variable and fourth column
indicates the actual observation made. The initial states of
both the CB's are off. The source always supplies a constant
current of 5 units and all the conductance values are I .
When L3 is run on this fault scenario it returns the
following results:
Candidates

[Size: 2 Probability: 4e-05
Assumptions for time: 1[

roLoca t ion= 'ha l fRes i s t ance ' 1
1
Assumptions f o r time: 2 [

Assumption [CBl Transition fromLocation='on'

Assumption [CBZ Transition fromLocation='on'
t o L o c a t i o n = ' h a l f R e s i s t a n c e ' 1

)

TirneOfEaultDetection = 1

Candidates visited: 55

I

L3 figures out that both CB's are at halResistance (only
those modes make the observations consistent with the
model). In order to achieve this, it looks at 55 possible
candidates before finding the correct one. This is because it
tests candidates in the order of prior probability of failure
(for multiple faults, probability is product of individual
probabilities) and as a result all single faults are typically
tested before double faults. Also since we are dealing with a
transition system, the same fault occurring at different time
steps could have different effects on the behavior of the
system and so L3 has to consider different combinations of
time steps and faults to consider all possible cases.

5. CONCLUSIONS AND FUTURE WORK

We presented the Livingstone 3 model-based diagnosis
system that extends Livingstone 2 to allow diagnosis of
hybrid systems. We also presented the modeling framework
that allows the capture of quantitative and continuous
constraints for use by L3. This system is capable of
identifying multiple discrete faults in systems that exhibit a
mix of discrete and continuous behavior. We have tested L3
on some simple examples, some of which are used as test
beds for other diagnostic approaches, and the results are
promising.

In future work, we would like to develop other constraint
systems to be included as part of architecture, specifically
graph based reasoning systems like flow graphs, and bond
graphs. In addition, we would like to implement stochastic
approaches like Kahnan filters and particle filters to handle
the uncertainties caused by modeling approximations,
sensor noise, unknown inputs etc. We will also be working
to improve the constraint propagation strategies for more
efficient conflict generation. Constraint retraction and re-
support methods based on explanations could lead to faster
and efficient constraint propagation. We are also working
Jet Propulsion Laboratory to develop a fast candidate
generation algorithm based on Integer Programming [9].

6

3500

REFERENCES

1. Hamscher, W., L. Console, and J. De fleer, Readfngy in
model-ba.sed diagnosis. 1992, San Mateo, CA: Morgan
Kaufmann Publishers. ix, 520.
B. C. Williams, P. P. Nayak A Model-based Approach
to Reactive Self-Configuring Systems, AAA1 1996, pp
971-978.

3. J. Kurien, P. P. Nayak Back to the Future with
Consistency-based Trajectoly Tracking, AAAYIAAI
2000, pp370-377.
P. Robinson, M. Shirley, D. Fletcher, R. Alena, D.
Duncavage, C. Lee, “Applying Model-Based
Reasoning to the FDlR of the Command & Data
Handling Subsystem of the International Space
Station,” Proceedings of the 7Ih lnternational
Symposium on Artificial Intelligence, Robotics and
Automation in Space (ISAlRAS03) May 19-23,2003,
Brian C. Williams, and Robert Ragno, ‘Conflict-directed
A* and its Role in Model-based Embedded Systems,” to
appear Special Issue on Theory and Applications of
Satistiability Testing, Joumal of Discrete Applied Math.
Alur, R., et al., Hybrid Automata - An Algorithmic
Approach to Specification and Verification of Hybrid
Systems, in Lecture Notes in Computer Science: Hybrid
Systems 1. 1994, Springer Verlag. pp. 209-229.

7. Mosterman, P.J. and G. Biswas. Diagnosis of Continuous
Valued Systems in Transient Operating Regions. LEEE
Transactions on Systems, Man, and Cybernetics, 1999.
29: pp. 554565.
S. Nansimhan and G. Biswas, “Model-based Diagnosis
of Hybrid Systems,” Eighteenth Intl. Joint Conf. on
Artificial Intelligence, Acapulco, Mexico, Aug., 2003.
Fijany, F. Vatan, A. Barrett, M. James, C . Williams, and
R. Mackey. “A Novel Model-Based Diagnosis Engine:
Theory and Applications”, 2003 IEEE Aerospace
Conference. 2003.

2.

4.

5.

6.

8.

9.

BIOGRAPHY
Dr. Sriram Narasimhaa is a computer scientist with QSS

group inc., and works as a contractor at
the NASA Ames Research Center where

i he is a member of the Model Based 1 Diagnosis and Recovery Group in the
j Computations Sciences division at the

NASA Ames Research Center. He earned
his Ph.D. from the Computer Science
department at Vanderbilt University in

August 2002. His doctoral dissertation was on model-based
diagnosis of hybrid systems. Prior to that, he received his
B.E in Computer Science from Birla Institute of Technology
& Science in 1995, his M.Sc. in Economics from Birla
Institute of Technology & Science in 1995, and his M.S in
Computer Science from Vanderbilt University in 1998. Dr.
Narasimhan’s main research interest is in model-based
diagnosis, especially for hybrid systems. At the NASA

Ames Research Center, he is the principal investigator for
the research effort to develop Livingstone 3, a model-based
diagnosis engine for hybrid systems that is a successor to
Livingstone. During his doctoral work, he was funded by
Boeing to work on fault adaptive control of f15 aircraft. He
spent three summers at Xerox PARC developing a model-
based diagnosis engine for copier machines. His other
research interests are in active diagnosis, diagnosability,
measurement selection, and fault adaptive control.

Lee Brownston bas been a Computer Scientist V with QSS
Group, Inc., since June 2001. He bas

E maintained Livinestone 2 and
L

supported Livingstone 2 users, and has
participated in the design and
implementation of Livingstone 3. Prior
experience includes World-Wide Web
development with Blue Pumpkin, Inc.
(2000-2001) and EProNet (1998-
2001); artificial intelligence

programming with Stanford’s Knowledge Systems
Laboratory (1990-1998) and FMC Corporate Engineering
Center (1986-1990) and Carnegie-Mellon University (1982-
1986). Prior to that, he was an Assistant Professor in the
Department of Psychology, Florida International University
(1982-1986). He holds a B.A. in Psychology (University of
Michigan, 1971), Ph.D. in Psychology (University of
Minnesota, 1977), and a B.S. (1980) and M.S. (1982) in
Computer Science (Florida International University).

Daniel Burrows is a Master’s student in the Computer
Science and Engineering Department at Penn State
University. His research interests are in Software
Engineering and Constraint Programming. He was a
summer intern at the NASA Ames Research Center from
June-August 2003 at which time he was involved in the
development of the Livingstone 3 model-based diagnosis
engine.

I

3501

